# Saleh Al-Mousawi [a], Mervat Mohammed Abdel-Khalik [b], Seham El-Sherbiny [a], Elizabeth John [a],Mohammed Hilmy Elnagdi* [a,c] 

[a] Department of Chemistry, Faculty of Science, University of Kuwait P. O. Box 5969 Safat, 13060 Kuwait.
[b] Department of Chemistry, Girls College for Arts, Science and Education, Ain Shams University, P. O. Box 11757 Heliopolis, Cairo, A. R. Egypt
[c] Department of Chemistry, Faculty of Science, Cairo University, Giza, A. R. Egypt
Received March 5, 2001
Several new enaminodienones prepared from substituted acetone and dimethylformamide dimethylacetal were used as precursors for synthesis of pyridines, pyranones and benzofurans.
J. Heterocyclic Chem., 38, 949 (2001).

Enaminones are versatile reagents and their chemistry has recently received considerable interest [1-3]. In recent work from our laboratories we have successfully utilized enaminones as building blocks for the synthesis of a wide range of heterocycles [4-8]. In conjunction with this work we have investigated possible utility of dienones 1 for synthesis of different otherwise not readily assessable heteroaromatic compounds of potential interest, as agrochemical, pharmaceutical or dye intermediates. In the present article, we report the synthesis of several new dienones and their utility as precursor of polyfunctional heteroaromatics. It has been recently reported [9] that acetone condenses with dimethylformamide dimethylacetal to yield enaminone 2. The Attempted condensation of $\mathbf{2}$ with another molecule of dimethylformamide dimethylacetal resulted in polymerization under reaction conditions. It is most likely that the methyl function under the reaction conditions has added to the enaminones moiety in a successive reaction. To avoid such process we decided to work with substituted acetones. Consequently, benzotriazol-1-yl-acetone was prepared via reacting chloroacetone with benzotriazole in basic conditions. Although this reaction has afforded, in the past, mixtures of $\mathbf{3}$ and $\mathbf{4}$ [10] modification of a procedure recently published by Katritzky et al., [10-11] enabled exclusive preparation of 4 . Compound $\mathbf{4}$, so obtained, condensed readily with dimethylformamide dimethylacetal in refluxing xylene for 10 hours. Although condensation with dimethylformamide dimethylacetal may in theory lead to a mixture of 5 and $\mathbf{6}$, only 5 is formed in exclusively as ${ }^{1} \mathrm{H}$ NMR revealed a presence of a singlet corresponding to methyl at $\delta 2.53 \mathrm{ppm}$ and the absence of olefinic doublet of doublet which would be observed in the ${ }^{1} \mathrm{H}$ NMR spectra of 6 . Condensing 5 further with one mole of dimethylformamide dimethylacetal in refluxing xylene afforded the dienaminone 7. The ${ }^{1} \mathrm{H}$ NMR of this product revealed benzotriazolyl protons in addition to a singlet at $\delta 7.84 \mathrm{ppm}$ and two doublets at $\delta 4.10$ and 8.12 ppm for $\mathrm{H}-4$ and $\mathrm{H}-5$. Although the reaction of 5 with dimethylformamide dimethylacetal may also yield $\mathbf{8}$ the ${ }^{1} \mathrm{H}$ NMR indicated that only the trans form 7 was formed as is confirmed by coupling $J$ values for olefinic doublets (Scheme 1).


Condensation of 1-substituted-1-butene-3-one 9a-c with dimethylformamide dimethylacetal, afforded the dienones 10a-c in good yield. No trace of $Z$-form is observed, only the $E$ forms 10a-c were isolated in this reaction as indicated from the coupling values for olefinic doublets. For example 10c showed two pairs of doublets at $\delta 5.26$ and $7.67 \mathrm{ppm} J=$ 12 Hz and at 6.70 and $7.20 \mathrm{ppm} J=16 \mathrm{~Hz}$ (Scheme 2).

Scheme 2


Compounds $\mathbf{7}$ and $\mathbf{1 0}$ were then utilized as starting materials for synthesis of a variety of oxygen and nitrogen
heteroaromatic. Thus reacting 7 with ammonium acetate/acetic acid resulted in the formation of benzotriazolylpyridone 11a while reaction with hydrazines afforded the benzotriazolylpyridone 11b,c. Reaction with aminopyrazole afforded the pyrazolyl benzotriazolylpyridone $\mathbf{1 2}$ that has been shown via ${ }^{1} \mathrm{H}$ NMR to exist as equilibrium mixture of forms 12a and 12b in addition to zwitterionic form 12c as ring protons for both pyridone and pyrazole appear as multiplets (Scheme 3). Further attempts to utilize 7 as building blocks for the synthesis of heterocycles via reaction with active methylene reagents, resulted in the formation of a complex mixture of products. This can be readily rationalzied in terms of the existence of multiple electrophilic sites of nearly equal reactivity, consequently we shifted our investigation to $\mathbf{1 0}$, in which pronounced difference in reactivity of electrophilic sites is anticipated. Compounds $\mathbf{1 0}$ proved to be a much better building blocks.

Scheme 3


Compounds 10a-c reacted with hippuric acid 13 in acetic anhydride to yield a product assumed to be the pyranone $\mathbf{1 6 a}-\mathbf{c}$ rather than the isomeric $\mathbf{1 5 a} \mathbf{- c}$, based on ${ }^{1} \mathrm{H}$ NMR that revealed the existence of NH signal at approximately 9.60 ppm and absence of proton signal linked to $\mathrm{sp}^{3}$ carbon. It is thus assumed that hipuric acid is initially cyclized into the oxazolone $\mathbf{1 4}$ which then adds to the enaminone moiety at $\mathrm{C}-1$ yielding $\mathbf{1 5 a} \mathbf{- c}$ that further rearrange via loss of water yielding the final isolable pyranone 16a-c. This is a new extension to the Kepe acylaminopyranone synthesis [9]. Similar reaction of 10a-c with glycine in acetic anhydride resulted in the formation of the acetylaminopyranone 16d-f (Scheme 4).

Scheme 4


15
16

$$
\text { b, } \mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=4-\mathrm{OCH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}
$$

$$
\mathrm{c}, \mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=2 \text {-furyl }
$$

$$
\mathrm{d}, \mathrm{R}^{1}=\mathrm{CH}_{3}, \mathrm{R}^{2}=\mathrm{Ph}
$$

$$
\mathrm{e}, \mathrm{R}^{1}=\mathrm{CH}_{3}, \mathrm{R}^{2}=4-\mathrm{OCH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}
$$

$$
\mathrm{f}, \mathrm{R}^{1}=\mathrm{CH}_{3}, \mathrm{R}^{2}=2 \text {-furyl }
$$

Compounds 10a-c reacted with p-benzoquinone to yield a product of addition via dimethylamine and water elimination, this product can thus be formulated as $\mathbf{1 8}$ or isomeric 20. The ${ }^{1} \mathrm{H}$ NMR, in all cases, indicated the presence of a formyl-H at $\delta 9.0,9.21$ and 9.17 ppm . Thus structure 20a-c was considered most likely. It is thus believed that $p$ benzoquinone initially adds to electron rich $\mathrm{C}-2$ yielding acyclic $\mathbf{1 9}$ which then cyclizes exclusively into 20. Although cyclization into $\mathbf{1 8}$ seems to be kinetically more favored, product 20 is apparently thermodynamically more stable because of its extended conjugated double bond system (Scheme 5).


Compounds 10a,c also reacted with naphthoquinone to yield the furonaphthofuran derivatives 22a,b (Scheme 6).

Scheme 6


Compounds 10a-c reacted with aromatic diazonium salts to yield the hydrazonopentenals 23a-c. The ${ }^{1} \mathrm{H}$ NMR indicated the presence of a mixture of both $E$ and $Z$ forms of these pentenals in approximately equivalent ratios as ${ }^{1} \mathrm{H}$ NMR revealed two signals at $\delta 9.57 \mathrm{ppm}$ and 10.14.ppm for a total of one proton. The low field signal is attributed to the $E$ formyl-H, which is shifted by deshielding as a result of H-bonding with the carbonyl oxygen. Trials to cyclize 23a-c into tetrahydropyridazinones failed (Scheme 7).

Scheme 7


## EXPERIMENTAL

All melting points are uncorrected. IR spectra were recorded in KBr disks using a Shimadzu IR-470 spectrophotometer. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker Ac-80 spectrometer with DMSO- $\mathrm{d}_{6}$ as solvent (unless stated otherwise) and TMS as internal standard; chemical shifts are reported in $\delta$ units (ppm). Mass spectra were measured on GC/MS INCOS XL Finnigan MAT. Microanalyses were performed on LECO CHNS-932. Analytical measurements were performed in Cairo University and Kuwait University.

2-(1,2,3-Benzotriazol-1-yl)-1,5-dimethylamino-1,4-pentadiene-3-one (7).

A suspension of 1,2,3-benzotriazol-1-yl-acetone 41.75 g ( 10 mmol ) in xylene ( 30 ml ) was treated with dimethylformamide dimethylacetal $2.38 \mathrm{~g}(20 \mathrm{mmol})$. The reaction mixture was refluxed for 48 hours and was allowed to cool. The solid product, so formed, was collected by filtration and crystallized from chloroform to yield: 1.54 g of $7(60 \%)$; mp $141^{\circ} \mathrm{C}$; IR $(\mathrm{KBr})$ : v 1599 $\mathrm{cm}^{-1}(\mathrm{CO}) ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}$ ): $\delta 2.48$ (s, 6H, $\mathrm{NMe}_{2}$ ), $2.63\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{NMe}_{2}\right), 4.10(\mathrm{~d}, 1 \mathrm{H}, J 12 \mathrm{~Hz}, 4-\mathrm{H}), 7.30-7.47(\mathrm{~m}, 4 \mathrm{H}$, arom. H), $7.84(\mathrm{~s}, 1 \mathrm{H}, 1-\mathrm{H}), 8.12(\mathrm{~d}, 1 \mathrm{H}, J 12 \mathrm{~Hz}, 5-\mathrm{H})$; MS (EI, $70 \mathrm{EV}): m / z 285\left[\mathrm{M}^{+}\right]$.

Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}: \mathrm{C}, 63.14 ; \mathrm{H}, 6.71 ; \mathrm{N}, 24.55$. Found: C, 63.18; H, 6.53; N, 24.32.

General Procedure for the Preparation of Compounds 10a-c.
A suspension of each of $9 \mathbf{9 - c}(10 \mathrm{mmol})$ in xylene $(30 \mathrm{ml})$ was treated with dimethylformamide dimethylacetal 1.19 g (10 mmol ). The reaction mixture was refluxed for 3 hours and was allowed to cool. The solid product, so formed, was collected by filtration and crystallized from ethanol.

1-Dimethylamino-5-phenyl-1,4-pentadiene-3-one (10a).
Compound 10a was obtained in $87 \%$ yield $(1.27 \mathrm{~g}) \mathrm{mp} 107^{\circ} \mathrm{C}$; IR (KBr): v $1640 \mathrm{~cm}^{-1}(\mathrm{CO}) ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}$ ): $\delta$ $2.72(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NMe}), 2.83(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NMe}), 5.38(\mathrm{~d}, 1 \mathrm{H}, J 12 \mathrm{~Hz}, 2-\mathrm{H})$, $7.03(\mathrm{~d}, 1 \mathrm{H}, J 16 \mathrm{~Hz}, 4-\mathrm{H}), 7.32-7.43(\mathrm{~m}, 4 \mathrm{H} ; 3 \mathrm{H}$ arom. H, $5-\mathrm{H})$, 7.58-7.76 (m, 2H, arom. H), $7.85(\mathrm{~d}, 1 \mathrm{H}, J 12 \mathrm{~Hz}, 1-\mathrm{H})$; MS (EI, $70 \mathrm{EV}): \mathrm{m} / \mathrm{z} 201\left[\mathrm{M}^{+}\right]$.

Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{NO}: \mathrm{C}, 77.58 ; \mathrm{H}, 7.51 ; \mathrm{N}, 6.96$. Found: C, 77.47; H, 7.39; N, 6.74.

1-Dimethylamino-5-(4-methoxyphenyl)-1,4-pentadiene-3-one (10b).

Compound 10b was obtained in $52 \%$ yield $(1.20 \mathrm{~g}) \mathrm{mp} 107^{\circ} \mathrm{C}$; IR (KBr): v $1655 \mathrm{~cm}^{-1}(\mathrm{CO}) ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}$ ): $\delta$ 2.82 (s, 3H, NMe), 3.11 (s, 3H, NMe), 3.78 (s, 3H, OMe), 5.24 $(\mathrm{d}, 1 \mathrm{H}, J 12 \mathrm{~Hz}, 2-\mathrm{H}), 6.85(\mathrm{~d}, 1 \mathrm{H}, J 16 \mathrm{~Hz}, 4-\mathrm{H}), 6.95(\mathrm{~d}, 2 \mathrm{H}, J$ 8 Hz , arom. H), $7.34(\mathrm{~d}, 1 \mathrm{H}, J 16 \mathrm{~Hz}, 5-\mathrm{H}), 7.60(\mathrm{~d}, 2 \mathrm{H}, J 8 \mathrm{~Hz}$, arom. H), $7.68(\mathrm{~d}, 1 \mathrm{H}, J 12 \mathrm{~Hz}, 1-\mathrm{H}) ; \mathrm{MS}(\mathrm{EI}, 70 \mathrm{EV}): m / z 231$ $\left[\mathrm{M}^{+}\right]$.

Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{NO}_{2}$ : C, $72.70 ; \mathrm{H}, 7.41 ; \mathrm{N}, 6.06$. Found: C, 72.61 ; H, 7.39 ; N, 6.07.

1-Dimethylamino-5-(2-furyl)-1,4-pentadiene-3-one (10c).
Compound 10c was obtained in $80 \%$ yield $(1.50 \mathrm{~g}) \mathrm{mp} 127^{\circ} \mathrm{C}$; IR (KBr): v $1630 \mathrm{~cm}^{-1}(\mathrm{CO}) ;{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}$ ): $\delta$ 2.83 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{NMe}$ ), 3.11 ( $\mathrm{s}, 3 \mathrm{H}, \mathrm{NMe}), 5.26(\mathrm{~d}, 1 \mathrm{H}, J 12 \mathrm{~Hz}, 2-\mathrm{H})$, 6.58-6.59 (m, 1H, furyl H), $6.70(\mathrm{~d}, 1 \mathrm{H}, J 16 \mathrm{~Hz}, 4-\mathrm{H}), 6.77$ (d,
$1 \mathrm{H}, J 8 \mathrm{~Hz}$, furyl H), $7.20(\mathrm{~d}, 1 \mathrm{H}, J 16 \mathrm{~Hz}, 5-\mathrm{H}), 7.67(\mathrm{~d}, 1 \mathrm{H}, J$ $12 \mathrm{~Hz}, 1-\mathrm{H}), 7.76(\mathrm{~d}, 1 \mathrm{H}, J 8 \mathrm{~Hz}$, furyl H); MS (EI, 70 EV$): m / z$ 191 [M+].

Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{2}$ : $\mathrm{C}, 69.09 ; \mathrm{H}, 6.85 ; \mathrm{N}, 7.33$. Found: C, 68.83; H, 6.74; N, 7.45.

## 3-(1,2,3-Benzotriazol-1yl)-1,4-dihydropyridin-4-one (11a).

A mixture of $7(2.85 \mathrm{~g}, 10 \mathrm{mmol})$, ammonium acetate $(3.0 \mathrm{~g})$ and acetic acid $(0.6 \mathrm{ml})$ was heated with stirring at $200^{\circ} \mathrm{C}$ for half an hour, then left to cool and triturated with ethanol. The solid product, so formed, was collected by filtration and crystallized from ethanol to yield 1.27 g of $\mathbf{1 1 a}(60 \%)$; mp $267{ }^{\circ} \mathrm{C}$; IR (KBr): v 3130 (NH), $1646 \mathrm{~cm}^{-1}$ (CO); ${ }^{1} \mathrm{H}$ NMR ( 400 MHz , DMSO): $\delta$ 6.48-6.50 (m, 1H, arom. H), 7.43-7.54 (m, 3H, arom. H), $7.91(\mathrm{~d}, 1 \mathrm{H}, J 8 \mathrm{~Hz}, 5-\mathrm{H}), 8.12(\mathrm{~d}, 1 \mathrm{H}, J 8 \mathrm{~Hz}, 6-\mathrm{H}), 8.37(\mathrm{~s}$, $1 \mathrm{H}, 2-\mathrm{H}), 12.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$; MS (EI, 70 EV$): m / z 212\left[\mathrm{M}^{+}\right]$.

Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O}: \mathrm{C}, 62.25 ; \mathrm{H}, 3.80 ; \mathrm{N}, 26.40$. Found: C, 61.89; H, 3.94; N, 26.37.

1-Amino-3-(1,2,3-Benzotriazol-1yl)-1,4-dihydropyridin-4-one (11b).

To a suspension of $7(2.85 \mathrm{~g}, 10 \mathrm{mmol})$ in ethanol ( 30 ml ), hydrazine hydrate $(1.50 \mathrm{ml})$ was added. The reaction mixture was refluxed for 30 minutes then allowed to cool to room temperature. The solid product, so formed, was collected by filtration and crystallized from ethanol to yield 11b $1.58 \mathrm{~g}(70 \%)$; mp $221^{\circ} \mathrm{C}$; IR (KBr): v 3312, $3122\left(\mathrm{NH}_{2}\right), 1651 \mathrm{~cm}^{-1}(\mathrm{CO}) ;{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{DMSO}): \delta 6.36-6.55\left(\mathrm{~m}, 3 \mathrm{H}\right.$, arom. $\left.\mathrm{H}, \mathrm{NH}_{2}\right), 7.40-7.48(\mathrm{~m}$, 3 H , arom. H), $7.80(\mathrm{~d}, 1 \mathrm{H}, J 8 \mathrm{~Hz}, 5-\mathrm{H}), 8.02(\mathrm{~d}, 1 \mathrm{H}, J 8 \mathrm{~Hz}, 6-\mathrm{H})$, 8.26 (s, 1H, 2-H); MS (EI, 70 EV ): m/z 227 [M+].

Anal. Calcd. for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{~N}_{5} \mathrm{O}: \mathrm{C}, 58.14 ; \mathrm{H}, 3.99 ; \mathrm{N}, 30.82$. Found: C, 58.14; H, 4.16; N, 30.83.

3-(1,2,3-Benzotriazol-1yl)-1-phenylamino-1,4-dihydropyridin-4-one (11c).

To a suspension of $7(2.85 \mathrm{~g}, 10 \mathrm{mmol})$ in ethanol ( 30 ml ), phenylhydrazine hydrochloride ( $1.44 \mathrm{~g}, 10 \mathrm{mmol}$ ) was added. The reaction mixture was refluxed for 1 hour then allowed to cool at room temperature. The solid product, so formed, was collected by filtration and crystallized from ethanol to yield $2.54 \mathrm{~g} \mathrm{11c}$ ( $84 \%$ ) ; mp $198{ }^{\circ} \mathrm{C}$; IR (KBr): $=3282(\mathrm{NH}), 1648 \mathrm{~cm}^{-1}(\mathrm{CO}) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO): $\delta 6.64-7.13(\mathrm{~m}, 6 \mathrm{H}$, arom. H), 7.43$7.56(\mathrm{~m}, 3 \mathrm{H}$, arom. H), 8.08-8.10 (m, 2 H , arom. H), $8.26(\mathrm{~s}, 1 \mathrm{H}$, 2-H), $9.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$; MS (EI, 70 EV$): m / z 302$ [M+1].

Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}: \mathrm{C}, 67.31$; $\mathrm{H}, 4.32 ; \mathrm{N}, 23.09$. Found: C, 67.11; H, 4.13; N, 22.84.

3-(1,2,3-Benzotriazol-1yl)-1-(pyrazol-3yl)-1,4-dihydropyridin-4-one (12).

To a suspension of $7(2.85 \mathrm{~g}, 10 \mathrm{mmol})$ in ethanol ( 30 ml ), 3aminopyrazole $(0.83 \mathrm{~g}, 10 \mathrm{mmol})$ was added. The reaction mixture was refluxed for 1 hour then allowed to cool at room temperature. The solid product, so formed, was collected by filtration and crystallized from pyridine to yield 1.66 g 12 ( $60 \%$ ); mp 309 ${ }^{\circ} \mathrm{C}$; IR (KBr): v 3126 (NH), $1652 \mathrm{~cm}^{-1}(\mathrm{CO}) ;{ }^{1} \mathrm{H}$ NMR (400 $\mathrm{MHz}, \mathrm{DMSO}): ~ \delta 6.63-6.67(\mathrm{~m}, 2 \mathrm{H}$, arom. H), 7.44-7.60 (m, 3H, arom. H), 7.89-7.92 (m, 1H, arom. H), 8.10-8.18 (m, 1H, arom. $\mathrm{H})$, 8.43-8.56 (m, 1 H , arom. H), 8.88-8.91 (m, 1H, arom. H), $13.40(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$; MS (EI, 70 EV$): \mathrm{m} / \mathrm{z} 278\left[\mathrm{M}^{+}\right]$.

Anal. Calcd. for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{6} \mathrm{O}: \mathrm{C}, 60.42 ; \mathrm{H}, 3.62 ; \mathrm{N}, 30.20$. Found: C, 60.53; H, 3.83; N, 29.92.

General Procedure for the Preparation of Compounds 16a-c.
A solution of each of 10a-c ( 10 mmol ) and hippuric acid $(1.79 \mathrm{~g}, 10 \mathrm{mmol})$ in acetic anhydride was heated under reflux for 1 hour. The reaction mixture was concentrated in vacuo. The solid product obtained upon cooling was isolated by filtration and recrystallized from an ethanol/dioxane mixture.
$N$-\{2-Oxo-6-[(E)-2-phenylethenyl]-2H-pyran-3-yl\}benzamide (16a).

Compound 16a was obtained in $62 \%$ yield ( 1.96 g ); mp 212 ${ }^{\circ} \mathrm{C}$; IR (KBr): v 3343 (NH), 1706 (ring CO), $1670 \mathrm{~cm}^{-1}$ (amide CO); ${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO): $\delta 6.61$ (d, $1 \mathrm{H}, J 8 \mathrm{~Hz}$, arom H), 7.01 (d, 1H, J 16Hz, vinyl-H), 7.25 (d, 1H, J 16 Hz , vinyl-H), 7.34-7.41 (m, 3H, arom. H), 7.54-7.56 (m, 2 H , arom. H), 7.61$7.68(\mathrm{~m}, 3 \mathrm{H}$, arom. H), 7.94-7.96 (m, 2H, arom. H), $8.16(\mathrm{~d}, 1 \mathrm{H}$, $J 8 \mathrm{~Hz}$, arom. H), $9.64(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$; MS (EI, 70 EV$): m / z(\%)=$ 317 [M+].
Anal. Calcd. for $\mathrm{C}_{20} \mathrm{H}_{15} \mathrm{NO}_{3}: \mathrm{C}, 75.69 ; \mathrm{H}, 4.76 ; \mathrm{N}, 4.41$. Found: C, 75.59; H, 4.81; N, 4.49.
N -\{6-[(E)-2-(4-Methoxyphenyl)ethenyl]-2-oxo-2H-pyran-3yl $\}$ benzamide (16b).

Compound 16b was obtained in $51 \%$ yield ( 1.76 g ); mp 216 ${ }^{\circ} \mathrm{C}$; IR (KBr): v 3378 (NH), 1702 (ring CO), $1670 \mathrm{~cm}^{-1}$ (amide CO ); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}$ ): $\delta 3.79$ (s, $3 \mathrm{H}, \mathrm{OCH}_{3}$ ), $6.52-$ $6.53(\mathrm{~m}, 1 \mathrm{H}$, arom. H), 6.89-6.98 (m, 3H, arom. H, vinyl H), 7.21 (d, 1H, J 16Hz, vinyl-H), 7.52-7.62 (m, 5H, arom. H), 7.94 (d, $2 \mathrm{H}, J 8 \mathrm{~Hz}$, arom. H), $8.12(\mathrm{~d}, 1 \mathrm{H}, J 8 \mathrm{~Hz}$, arom. H), $9.57(\mathrm{~s}, 1 \mathrm{H}$, NH); MS (EI, 70 EV): $m / z 347$ [M+].
Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{NO}_{4}$ : C, 72.61; H, 4.93; N, 4.03. Found: C, 72.32; H, 4.94; N, 4.11.
$N$-\{6-[(E)-2-(2-Furyl)ethenyl]-2-oxo-2H-pyran-3-yl\}benzamide (16c).

Compound 16c was obtained in $73 \%$ yield ( 2.25 g ); mp $214{ }^{\circ} \mathrm{C}$; IR (KBr): v 3370 (NH), 1705 (ring CO), $1676 \mathrm{~cm}^{-1}$ (amide CO). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}$ ): $\delta 6.61-6.63(\mathrm{~m}, 2 \mathrm{H}$, arom. H), 6.71-6.79 (m, 2H, furyl 4-H, vinyl H), 7.09(d, 1H, J 16 Hz , vinyl H), 7.52-7.64 (m, 3H, furyl 3-H, arom. H), 7.79-7.80 $(\mathrm{m}, 1 \mathrm{H}$, furyl $5-\mathrm{H}), ~ 7.93-7.95(\mathrm{~m}, 2 \mathrm{H}$, arom. H), 8.11-8.13 (m, 1 H , arom. H), $9.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}$ ); MS (EI, 70 EV ): m/z 307 [M+].
Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{NO}_{4}$ : C, 70.35; H, 4.26; $\mathrm{N}, 4.56$. Found: C, 70.53; H, 4.36; N, 4.70.
General Procedure for the Preparation of Compounds 16d-f.
A solution of each of 10a-c $(10 \mathrm{mmol})$ and glycine $(0.78 \mathrm{~g}, 10$ mmol ) in acetic anhydride was heated under reflux for 1 hour. The reaction mixture was concentrated in vacuo. The solid product obtained upon cooling was isolated by filtration and recrystallized from ethanol.
$N$-\{2-Oxo-6-[(E)-2-phenylethenyl]-2H-pyran-3-yl $\}$ acetamide (16d).

Compound 16d was obtained in $90 \%$ yield ( 2.30 g ); mp 203 ${ }^{\circ} \mathrm{C}$; IR (KBr): v 3306 (NH), 1719 (ring CO), $1676 \mathrm{~cm}^{-1}$ (amide CO); ${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO): $\delta 2.17\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 6.50$ (d, $1 \mathrm{H}, J 16 \mathrm{~Hz}$, vinyl-H), 6.82-7.73 (m, 7 H , arom. H), 8.25 (d, $1 \mathrm{H}, J 16 \mathrm{~Hz}$, vinyl-H), 9.65 (s, 1H, NH). - MS (EI, 70 EV ): m/z 255 [M ${ }^{+}$].
Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{3}$ : C, 70.58; H, 5.13; N, 5.49. Found: C, 70.43; H, 5.16; N, 5.49.
$N-\{6-[(E)$-2-(4-Methoxyphenyl)ethenyl]-2-oxo-2H-pyran-3$\mathrm{yl}\}$ acetamide (16e).

Compound 16e was obtained in $72 \%$ yield ( 2.05 g ); mp 209 ${ }^{\circ} \mathrm{C}$; IR (KBr): v 3329 (NH), 1709 (ring CO), $1678 \mathrm{~cm}^{-1}$ (amide CO); ${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO): $\delta 2.12$ (s, $3 \mathrm{H}, \mathrm{COCH}_{3}$ ), 3.80 $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.45(\mathrm{~d}, 1 \mathrm{H}, J 8 \mathrm{~Hz}$, arom. H), $6.86(\mathrm{~d}, 1 \mathrm{H}, J 16 \mathrm{~Hz}$, vinyl-H), 6.95-6.97 (m, 2H, arom. H), 7.13 (d, $1 \mathrm{H}, J 16 \mathrm{~Hz}$, vinylH), 7.58-7.60 ( $\mathrm{m}, 2 \mathrm{H}$, arom. H), 8.15-8.17 (m, 1H, arom. H), 9.69 (s, 1H, NH); MS (EI, 70 EV ): m/z 285 [M ${ }^{+}$].

Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{4}$ : C, 67.36; H, 5.30; N, 4.91. Found: C, 67.34; H, 5.28; N, 4.80 .
$N$-\{6-[(E)-2-(2-Furyl)ethenyl]-2-oxo-2H-pyran-3-yl $\}$ acetamide (16f).

Compound $\mathbf{1 6 f}$ was obtained in $86.5 \%$ yield ( 2.12 g ); mp 192 ${ }^{\circ} \mathrm{C}$; IR (KBr): $\mathrm{v} 3331(\mathrm{NH}), 1706$ (ring CO), $1682 \mathrm{~cm}^{-1}$ (amide $\mathrm{CO}) .{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}$ ): $\delta 2.12\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 6.52-$ 6.74 (m, 4H, 2H furyl 4-H, 3-H, pyranyl H, vinyl H), 7.01(d, 1H, $J 16 \mathrm{~Hz}$, vinyl H), 7.76 (s, 1 H , furyl H), $8.14(\mathrm{~d}, 1 \mathrm{H}, J 8 \mathrm{~Hz}$, pyranyl H), $9.69(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$; MS (EI, 70 EV ): $\mathrm{m} / \mathrm{z} 245\left[\mathrm{M}^{+}\right]$.

Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO}_{4}: \mathrm{C}, 63.67 ; \mathrm{H}, 4.52 ; \mathrm{N}, 5.71$. Found: C, 63.35; H, 4.54; N, 5.71.
General Procedure for the Preparation of Compounds 20a-c and 22a-b.

To a stirred solution of each of $\mathbf{1 0 a}-\mathbf{c}(10 \mathrm{mmol})$ in acetic acid 50 ml , each of $p$-benzoquinone and naphthoquinone ( 10 mmol ) was added. Stirring lasted over night at room temperature. The reaction mixture was evaporated in vacuo, and the solid product obtained was isolated by filtration and recrystallized from dioxan.
2-Phenylethylidene-5-hydroxybenzo[b]furan-3-al (20a).
Compound 20a was obtained in $59 \%$ yield ( 1.50 g ); mp 229 ${ }^{\circ} \mathrm{C}$; IR (KBr): v $3262 \mathrm{br}(\mathrm{OH}), 1650 \mathrm{~cm}^{-1}$ (CO); ${ }^{1} \mathrm{H}$ NMR ( 400 $\mathrm{MHz}, \mathrm{DMSO}): ~ \delta 4.40(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, \mathrm{OH}), 6.95-6.98(\mathrm{~m}, 1 \mathrm{H}$, arom. H), 7.45-7.47 (m, 4H, arom. H), 7.71 (d, $1 \mathrm{H}, J 16 \mathrm{~Hz}$, vinyl H), 7.79-7.84 (m, 4H, arom. H, vinyl H), 9.00 (s, 1H, CHO). MS (EI, 70 EV ): $m / z 264\left[\mathrm{M}^{+}\right]$.

Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{O}_{3}$ : $\mathrm{C}, 77.26 ; \mathrm{H}, 4.58$. Found: C , 77.40; H, 4.69.

5-Hydroxy-2-(4-methoxyphenylethylidene)benzo[b]furan-3-al (20b).

Compound 20b was obtained in $86 \%$ yield ( 2.50 g ); mp 223 ${ }^{\circ} \mathrm{C}$; IR (KBr): v $3264 \mathrm{br}(\mathrm{OH}), 1640 \mathrm{~cm}^{-1}(\mathrm{CO}) ;{ }^{1} \mathrm{H}$ NMR ( 400 $\mathrm{MHz}, \mathrm{DMSO}): \delta 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.84-6.86(\mathrm{~m}, 1 \mathrm{H}$, arom. $\mathrm{H}), 7.03(\mathrm{~d}, 2 \mathrm{H}, J 8 \mathrm{~Hz}$, arom. H), $7.50(\mathrm{~d}, 1 \mathrm{H}, J 8 \mathrm{~Hz}$, arom. H), 7.59-7.63 (m, 3 H , arom. H, vinyl H), $7.82(\mathrm{~d}, 2 \mathrm{H}, J 8 \mathrm{~Hz}$, arom. H), 9.21 ( $\mathrm{s}, 1 \mathrm{H}, \mathrm{CHO}$ ), 9.47 (br s, 1H, OH); MS (EI, 70 EV ): m/z 294 [ $\mathrm{M}^{+}$].

Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{O}_{4}: \mathrm{C}, 73.46 ; \mathrm{H}, 4.80$. Found: C, 73.20; H, 4.75.

## 5-Hydroxy-2-(2-furylethylidene)benzo[b]furan-3-al (20c).

Compound 20c was obtained in $82 \%$ yield ( 2.10 g ); mp 230 ${ }^{\circ} \mathrm{C}$; IR (KBr): v $3221 \mathrm{br}(\mathrm{OH}), 1650 \mathrm{~cm}^{-1}(\mathrm{CO}) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO): $\delta$ 6.68-6.69 (m, 1H, furyl 4-H), 6.84-6.87 (m, 1H, furyl 3-H), 7.05 (d, 1H, J 8Hz, arom. H), 7.38 (d, $1 \mathrm{H}, J 16 \mathrm{~Hz}$, vinyl H), 7.48-7.61 (m, 3H, arom. H, vinyl H), 7.90 ( $\mathrm{m}, 1 \mathrm{H}$, furyl 5-H), 9.17 (s, 1H, CHO), 9.47 (br s, 1H, OH); MS (EI, 70 EV ): $\mathrm{m} / \mathrm{z} 254\left[\mathrm{M}^{+}\right]$.

Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{O}_{4}$ : C, $70.86 ; \mathrm{H}, 3.96$. Found: C, 70.89; H, 4.05.

5-Hydroxy-2-(phenylethylidene)naphtho[1,2-b]furan-3-al (22a).
Compound 22a was obtained in $73 \%$ yield ( 2.30 g ); mp 287 ${ }^{\circ} \mathrm{C}$; IR (KBr): v $3190 \mathrm{br}(\mathrm{OH}), 1649 \mathrm{~cm}^{-1}(\mathrm{CO}) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO): $\delta 7.46-7.90(\mathrm{~m}, 10 \mathrm{H}$, arom. H, vinyl H), 9.369.42 (m, 2H, arom. H), 9.42 (s, 1H, CHO), 10.32 (br s, $1 \mathrm{H}, \mathrm{OH}$ ); MS (EI, 70 EV ): m/z 314 [ $\left.\mathrm{M}^{+}\right]$.
Anal. Calcd. for $\mathrm{C}_{21} \mathrm{H}_{14} \mathrm{O}_{3}$ : C, 80.24; H, 4.49. Found: C, 80.24; H, 4.54.

5-Hydroxy-2-(fur-2-yl-ethylidene)naphtho[1,2-b]furan-3-al (22b).

Compound 22b was obtained in $56 \%$ yield ( 1.70 g ); mp 265 ${ }^{\circ} \mathrm{C}$; IR (KBr): v $3201 \mathrm{br}(\mathrm{OH}), 1650 \mathrm{~cm}^{-1}(\mathrm{CO}) ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO): $\delta$ 6.71-6.72 (m, 1H, furyl 4-H), 7.08 (d, 1H, J 8 Hz , arom. H), $7.44(\mathrm{~d}, 1 \mathrm{H}, J 16 \mathrm{~Hz}$, vinyl H), 7.57-7.70 (m, 4 H , arom. H, vinyl H, furyl 3-H), 7.93 (d, $1 \mathrm{H}, J 8 \mathrm{~Hz}$, furyl 5-H), 8.208.26 (m, 2H, arom. H), 9.30 ( $\mathrm{s}, 1 \mathrm{H}, \mathrm{CHO}$ ), 10.28 (br s, $1 \mathrm{H}, \mathrm{OH}$ ); MS (EI, 70 EV ): $\mathrm{m} / \mathrm{z} 304$ [ $\left.\mathrm{M}^{+}\right]$.
Anal. Calcd. for $\mathrm{C}_{19} \mathrm{H}_{12} \mathrm{O}_{4}$ : C, 74.99 ; H, 3.97. Found: C, 74.69; H, 3.91.

## General Procedure for the Preparation of Compounds 23a-c.

A cold solution of benzenediazonium salt ( 10 mmol ) was prepared by adding a solution of sodium nitrite ( 1.5 g into 10 ml $\mathrm{H}_{2} \mathrm{O}$ ) to a cold solution of aniline hydrochloride with stirring. The resulting solution of the benzenediazonium salt was then added to a cold solution of each of $\mathbf{1 0 a - c}(10 \mathrm{mmol})$ in ethanol ( 50 ml ) containing sodium hydroxide.

## 3-Oxo-5-phenyl-2-phenylhydrazono-4-pentene-1-al (23a).

Compound 23a was obtained in $80 \%$ yield ( 2.22 g ); mp 140 ${ }^{\circ} \mathrm{C}$; IR (KBr): v 3118 (NH), 1660, $1641 \mathrm{~cm}^{-1}$ (CO); ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{DMSO}$ ): $\delta 7.47-7.52$ (m, 6H, arom. H, vinyl-H), 7.73$7.75(\mathrm{~m}, 5 \mathrm{H}$, arom. H), 7.82 (d, $1 \mathrm{H}, J 16 \mathrm{~Hz}$, vinyl H), $9.69(\mathrm{~s}, 1 \mathrm{H}$, CHO), 10.39 (s, 1H, NH); MS (EI, 70 EV ): m/z 278 [M ${ }^{+}$].
Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2}$ : C, 73.36; H, 5.07; N, 10.07. Found: C, 73.18; H, 5.10; N, 9.91.
3-Oxo-5-(4-methoxyphenyl)-2-phenylhydrazono-4-pentene-1-al (23b).

Compound 16a was obtained in $60 \%$ yield ( 1.84 g ); mp 152 ${ }^{\circ} \mathrm{C}$; IR (KBr): v 3120 (NH), 1658, $1639 \mathrm{~cm}^{-1}$ (CO); ${ }^{1} \mathrm{H}$ NMR
( $400 \mathrm{MHz}, \mathrm{DMSO}$ ): $\delta 3.89$ (s, 3H, OCH $)$ ), 7.02-7.76 (m, 10H, arom. H, vinyl-H), 7.83 (d, 1H, J 16Hz, vinyl H), 9.65 (s, 1H, CHO), 10.16 (s, $1 \mathrm{H}, \mathrm{NH}$ ); MS (EI, 70 EV ): $\mathrm{m} / \mathrm{z} 308\left[\mathrm{M}^{+}\right]$.

Anal. Calcd. for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$ : C, 70.11; H, 5.23; N, 9.09. Found: C, 70.02; H, 5.33; N, 8.91.
5-(2-Furyl)-3-oxo-2-phenylhydrazono-4-pentene-1-al (23c).
Compound 23c was obtained in $65 \%$ yield ( 1.74 g ); mp 129 ${ }^{\circ} \mathrm{C}$; IR (KBr): v $3115(\mathrm{NH}), 1652,1639 \mathrm{~cm}^{-1}$ (CO); ${ }^{1} \mathrm{H}$ NMR ( 400 MHz, DMSO): $\delta 6.65-6.68$ (m, 1H, furyl-H), 6.96-6.97 (m, 1 H , furyl-H), 7.31-7.34 (m, 1H, furyl-H), 7.51-7.78 (m, 6H, arom. H, vinyl-H), 7.78 (d, $1 \mathrm{H}, J 16 \mathrm{~Hz}$, vinyl H), 9.57 ( $\mathrm{s}, 1 \mathrm{H}$, CHO), 10.14 (s, 1H, NH); MS (EI, 70 EV ): m/z 268 [M ${ }^{+}$].

Anal. Calcd. for $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{3}$ : C, $67.15 ; \mathrm{H}, 4.51 ; \mathrm{N}, 10.44$. Found: C 66.87; H, 4.73; N, 10.40.

Acknowledgement.
The authors are grateful to University of Kuwait R. A. for financial support through project Sc 99 . Analytical facilities provided by SAF are highly appreciated.

## REFERENCES AND NOTES

[1] S. G. Hedge and C. R. Jones, J. Heterocyclic Chem., 30, 1501 (1993).
[2] L. J. O. Figueiredo and C. Kascheres, J. Org. Chem., 62, 1164 (1997).
[3] C. Reidlinger, R. Dworczak, and H. Junek, Monatshefte fur Chemie, 129, 1207 (1998).
[4] F. Al-Omran, M. M. Abdel-Khalik, A. A. Elkhair and M. H. Elnagdi, Synthesis, 91 (1997).
[5] A. Al-Enezi, B. Al-Saleh, and M. H. Elnagdi, J. Chem. Res. (S), 4 (1997); ibid (M) 0116 (1997).
[6] F. Al-Omran, N. Al-Awadhi, A. A. El-Khair, and M. H. Elnagdi, Org. Prep. Proced. Int., 29, 285 (1997).
[7] F. Al-Omran, N. Al-Awadhi, M. M. Abdel-Khalik, K. Kaul, A. A. El-Khair, and M. H. Elnagdi, J. Chem. Res. (S) 84 (1997), ibid (M) 0601 (1997).
[8] S. Al-Mousawi, K. S. George, and M. H. Elnagdi, Pharmazie, 54, 571 (1999).
[9] V. Kepe, M. Vocevar, and S. Polanc, J. Heterocyclic Chem. 33, 1707 (1996)
[10] A. R. Katritzky, Xiangfu Lan, Jason Yang, and Olga Denisko, Chemical Reviews, 98, 409 (1998).
[11] A. R. Katritzky, S. A.Henderson, and B. Yang, J. Heterocyclic Chem., 35, 1123 (1998).

